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~oT~-~~~~Bo~~T~~ zieKoTopra% yKa3aHmrr K ~p~6~~~eH~io~y pacwry ~y~~~Tor0 

TeEJiOO6MeHa B ~~~~~H~p~qeCKO~ CMCTeMe c ~p~MOyrO~b~~M ~0nepe~H~M ceuemerd. B 
yCJIOBIifSX,IIpeAyCMOTpeHHblX B pa6oTe, IlpHMeHllMa AByXMepHUi TeOpHR. PaCCMaTpIlBaeTCfi 

c~cTe~a~3cepnxnosepxaocT%lCIr,3anonHeHHaanorao~aKl~e~cpeAo~,~3nysewaeB~OTOpOt 

neoTpaxraeTc~~~enpeso~#nRieTc~.MeTo~perrre~~~npo6jrewnocwols~aaeTcrr~aEi~Terpa~~- 

H~IX ypaBIieHEfix. PaweT E~~H~B~~HTCR B cnegylouIeM nopf-qwe: 

1. CucTeara pacnpenenefieTcfl Ha 3o~b1; 
2.B cnysae HaHam c ~p~~oyro~b~~~x ceYea5feni npx 4-x rrosepxHoeTHhxx si 2-x 

o@beanmx 30Hax 3ziaqeHszR ~3asird~sx ~0Bep~ocTe~ 55 yron~32x ~0a~~~~~e~ToB 

lTpfiMOr0 JIyWCTOrO 06MeHa BbIYBC~RIOTCH no i$IOpMyJIaM (21)-(29); 

3. %ia~eHEXH ~El3&WIWO4SiX B33MMHblX IIOBepXHOCTet H yl?OJIBbIX xO3i#@~HeHTOB BbIWXC- 

3IRH)TCRno~opMynann(30)-(33); 

4. Pe3yJIF,TaTtTIIBH&Ie JIy‘iHCTbIe IIOTOKII (H.?Ii TeM?IepaTypLI 30H) Onpe~eJHiIOTCfi IEpEMeHe- 

HkIeM 4Oparyn (17)~ (18). 
MeTO~~~~~CTp~pOBaH ~p~Mep0~. ~O~B~~~C~eH~I~ ~p~Mepa~a~ B Ta6n.3, a~ Ta6a.P 

CpaBnHBaioTcfi HeHoTop=e 3KcrrepmMeHTaJfbHMe EaHHhIe c U~XO~HUMI~ yc~o~r?5i~~ M pes- 
yJIbTaTaMIl w2neHHoro npwepa. MeToA MOHCeT 6b1~b IIpIlMeHeH npH perueHvrM npo6nebl 

.'ySZiCTOl'O Te~~oo6Mena c y'ZeTOM pacnonomewsi $aKena B T~UK%. MeTOg 5IBHReTCR Taxwe 

IloJle3HbIM, eCJIH p3CC~aTp~~aeT~~ paC~pe~%~eH~e pe3y~bTaT~lBHOrO JlyWiCTOrO nOTOK B 

nonepewonf cegewu TOIIHR. 

4 4 c, 

a, 
I), 

H, 

h. 

NO~CLATU~ 
local points in radiating 
systern, see Fig. 1; 
absorptivity of walls; 
determinant used in the 
exampie ; 

X 1Om8 black-body radiation den- 
sity, W/me; 
area of surface zone, m2 ; 
volume-wall interchange 
area, defined by (I S), ma; 
wall-wall interchange area, 
defined by (12) and (13), 
m2; 
height of the duct, see Fig. 
3, m; 
expressions in equation (l), 
defined by (2), m-a; 

k, 

1, 

JK N, s, 

p, 

Q, 
4, 
r, 
S 

T, 
6 
v, 
X, 

absorption coefficient of the 
medium, m-l; 
beam length, see Fig. 1 and 
equation (20), m; 
special functions in equa- 
tions (21X24), values are 
given in Table 1; 
pressure of gas medium in 
(19), kg/cm2; 
heat flux, W; 
heat flux density, W/m”; 
reflectivity of the walls; 
length of the duct, see (23) 
and (24), m; 
absolute temperature, “K; 
temperature, “C; 
volume, m3; 
co-ordinate, Fig. 3, m; 
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Creek symbols 
r, 

Subscripts 
i, k, 
_A V, w, 
In, 

altitude of flame, Fig. 4, m; 

functions of equations (4)- 
(10) defined by equations 
(5) and (9), m-2; 
volume-wall interchange 
factor defined by (15) ; 
volume radiation density, 
defined by (3), W/m3; 
angle, see Fig. 1; 
geometrical length, defined 
by Fig. 3, m; 
wall-wall interchange 
factor, defined by (11) and 
c131. 

refers to surface zone; 
refers to volume zone; 
total number of surface 
zones ; 
total number of volume 
zones; 
refers to surface or volume 
zone ; 
effective flux from the sur- 
face; 
radiation flux incident on 
the surface; 
resulting flux through the 
surface ; 

1,2,3,4 I... refers to surface zone; 
1.2, subscripts at N used for 

separate kinds of functions 
of N. 

INTRODUCTION 

THE theory of radiant heat transfer in a system 
of surfaces with an absorbing medium has been 
well established theoreti~lly [I--5], but for 
practical calculations of such systems the over- 
simplified method based on the application of 
the effective thickness of the radiating layer is 
still used in most cases. This situation is brought 
about by the complexity of calculation when the 
theory is applied. The method proposed by Hottel 
and Cohen [6] also demands much computing 
work. However in a number of furnaces and duct- 
like combustion chambers heat radiation and ab- 

sorption of bottoms may be practically neglected. 
Conditions approximately correspond to the 
case when a radiating system is infinitely long 
in one dimension and the problem is therefore 
two-dimensional. Plainly considerable saving 
in computation can be achieved if a three- 
dimensional problem is reduced to a two- 
dimensional one. 

The purpose of the paper is to suggest some 
methods involving the application of the two- 
dimensional theory to calculating radiant heat 
transfer in cylindrical systems of rectangular cross 
section. The following assumptions are made: 

1. The process of radiant heat transfer takes 
place at conditions of local eq~librium. 

2. The flow and heat conduction of gray gas 
medium are neglected. 

3. The absorption coefficient of the medium 
is taken to be constant throughout the radiating 
system, and the reflectivity and refractivity of 
the medium are assumed to be zero. 

4. The Lambert law is assumed applicable 
and all the surfaces of the radiating system are 
considered gray. 

Since the present solution of the problem is 
reduced to the division of the radiating system 
into separate zones, more accurate results can 
be obtained, the less the optical density of the 
medium. 

SOME THEORETICAL ASPECTS 

The density of effective radiant flux leaving 
the point A (Fig. 1) can be expressed as the sum 
of the emitted flux density a (A) E(A) and the 
reflected flux density r (A) qw (A), where a (A) 
and Y (A) are absorptivity and reflectivity of the 
walls at the point A, and E (A) is the black-body 
radiation density of 1 ma of the surface at A. 
The flux density of incident radiation qtnc (A) 
is the sum of the effective flux density, reaching 
A from the other points B of the walls, and of 
the flux density emitted by the radiating medium 
from points C. The equation of the effective 
flux density [l-5] with the present assumptions 
is as follows : 
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FIG. 1. Schematic representation of radiating system 
[equation (l)]. 

where 

KGW = 
cos ‘#A cos ‘8B 1 

& exp (--klAs), 
AB 

co?5 iJA 
L (A@ = reXp(-khc) 

AC 

and k is the absorption coefficient of the medium, 
I is the length of the beam, 9 is the angle between 
the beam and the normal to the wall. 

For the volume radiation density 7 (C) the 
well-known formula can be written: 

q (C) = 4kE (C). (3) 

In the theory of integral equations the solution 
of equation (1) is given as follows : 

qeu (4 = a (4 E (4 + r (4 [ 1, kE tC> 
L(AC)dV-c JFBa(B)E(B)r(AB)dFB+ 

JF~ r (B) J ,, kE (C) L (BC) r (A@ dV dFB1 

(4) 

where the function r (AB) of equation (1) is a 
solution of integral equations : 

r (AB) = K (AB) + 

JIQ r (B) K (f’B) r (M’) dEn 

I’ (A B) == K (Al?) -t 
(5) 

~FL( @) K CAP) r (w d&. ! 

According to the second law of thermodynamics 
it follows from equation (4) that 

;,kL(AC)dV+ J‘FBa(B)r(AB)dFs+ 

]pB r (B) J, kL (BC) r (AB) dV dFB = 1. 

(6) 

Hence, according to equations (4) and (6) one 
obtains the resulting heat flux density at A : 

qres (4 = a (4 { .I”FB tE (B) - E (41 

m~(~~)dhd- j&w - 

E (41 [L (AC) + .I& r (B) L (W 

F (AB) dFB] k d V}. (7) 

The solution of the problem is given in 
equations (5) and (7). It is interesting to obtain 
however an approximate solution which is more 
suitable for application to design and computa- 
tion. It is usually realized by division of the 
system into zones with constant temperatures 
and physical properties. Thus if E (CJ) = const. 
is assumed at each volume zone j, the volume 
integrals in equations (l)-(7) may be expressed 
by means of surface integrals taken over the 
whole surface Fj enclosing the whole zone 
volume Vj: 

Svj kL (‘C~) d’~ = $F, k (‘C~) d’~. (8) 

It would also serve the purpose to define r (AC) 
as follows : 
r (AC) = K (AC) + 

JQ r 09 K W) r W) dh (9) 

If the system consists of m surface zones Ft 
and n volume zones VJ, then equation (7) may 
be written separately for each surface zone k 
by means of equations (8) and (9): 

qres (&) = ak { 2 at [E (&) - E (Ak)] 
i=l 

k = 1,2, 3, . . ., m. (10) 

Computing the resulting heat flux density 
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qres (A& the direct angle factors are applied, 
defined as 

#ki = _fFi K (Ak&) dt;i, 01) 

and the direct interchange areas defined as 

Hki = .fFk $kl dFk. (12) 

If the part of heat quantity transferred by 
multiple reflections is taken into consideration. 
the overall interchange factors and areas are 
defined as follows : 

(13) 

The leading angle factors and interchange 
areas are calculated by integration of equations 
(5). 

When the radiating system is divided into 
zones, it is usually assumed that the factors $ki 
may be approximately replaced by their average 
values HlcllFic. With this assumption equations 
(5) are reduced to a system of linear algebraic 
equations : 

u=i 
u#i 

The volume-w~l interchange factors and 
areas can be expressed as 

Ye-I = 9;Fj K(AkCd dFj, 1 

ykj = jbi I’ (Arc!) dFj, 
I 

Gkj = _fFk ykj dFk, i 
05) 

ckj = ~FI, yk3. dFk. 1 

Assuming ‘y%j may be approximately replaced 
by their average values Gug/Fu we may calculate 
values of ykj and Gkj from algebraic equations. 
Then equations (9) can be replaced by the 
system of algebraic equations : and the whole resulting heat quantity received 

’ (16) 

Proceeding from this we may recommend the 
following procedure for radiative heat-transfer 
calculation : 

(1). The system is divided into surface and 
volume zones. The division should be made in 
such a way that each zone is characterized by 
constant temperature and physical properties. 
In the general case the solutions of algebraic 
equations (14) and (16) are not exactly the 
solutions of integral equations (5) and (91, 
the accuracy of results increasing with increase 
in the number of zones. For approximate 
calculation the smallest possible number of 
zones is desirable since this considerably 
reduces computation. 

(2). The direct interchange factors and areas 
$ki, Hki, Ykf, Gki are calculated. Some of the 
values of $ki and Hr~r are determined directly 
while others are obtained from application of 
symmetry Hkt = i&k and the property of being 
able to add integrals Hfii + Hxu = Hk, ~1.~~ and 
#ki + lC’ku = $k, i+zc. Calculation of ykj or Gkj 
is reduced to determination of the values of 
#ki or Hkji and to setting up their algebraic 
sums according to equation (15). If the distance 
of the point Ar from the surface F$ becomes zero, 
Z&j = I, and at zero distance between parallel 
surfaces Fk and Fj> H&j = Fk if Fk >s Fj, and 
ffkj = t;i if Fk 1 Fj. 

(3). The values of overalt interchange factors 
and areas I,&, Rki, qkj, Gki are obtained by 
solving equations (14) and (16). 

(4). Equation (10) of the resulting heat flux 
density at A# can be written in the form: 
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or emitted by the surface R, is obtained by 
integrating function (17) over the surface Fk: 

&w, k = aa ( 5 & [E (&) - E (&_)I Rk$ 
j_, 

0 

+ c [E (cj) - f? (Ak)] ckj). (18) 
j-l 

It should be noted that the majority of assump- 
tions used in the present method are hardly 
relevant since most of the initial data are known 
only approximately and usually results of high 
accuracy are not demanded. Possibly an assump- 
tion of prime importance is one of gray radiation 
of gas medium. If selective absorbtivity and 
emissivity of gas medium are taken into account, 
then a correct solution of the problem in the 
case of gray walls becomes very complicated 
and some results are obtained only for a plane 
gas layer [7]. However it is shown [8] that 
radiation of gas medium may be approximately 
considered gray. If the combustion products of 
the fuel are taken as a “gray” gas medium, the 
value of the absorption coe~cient can be 
calculated by the formula recommended in [8]: 

k L‘ (1 - 0.38 s IO-“T) 0.8 

where T is the medium temperature. To deter- 
mine the mean beam length I, the formula of the 
characteristic size may be recommended: 

[;p_’ m 

F’ 

where F is determined as the whole area of 
surfaces enclosing the volume 1v of the radiant 
system. 

Calculation is more complicated but gives 
greater accuracy if the gas medium is considered 
gray in one part of the spectrum and transparent 
in the other part [6,9]. Application of this rule 
becomes more complicated if radiation of solid 
dust particles in a gas medium is to be allowed 
for. 

A DUCT OF RECTANGULAR 
CROSS SECTION 

Radiation in a system having the form of a 
cylindrical duct of rectangular cross section 

will be considered next. The problem is reduced 
to the two-dimensional case, if the temperature 
field and the physical properties along the length 
of the duct are assumed to be constant and the 
radiation effects of the bottoms are not taken 
into account. The schedule of calculation of 
radiant heat transfer is given in the previous 
section. Additional recommendations are pre- 
sented as follows: 

(1). In principle there is no difficuIty in taking 
any number of zones, but computation is rarely 
successful without ex~rimental data on tempera- 
ture distribution. It is therefore assumed that 
there are two volume zones only, as shown in 
Fig. 2. The volume can be divided into two 

3 

4 2 

FIG. 2. RectanguIar cross section of duct. l-h-surface 
zones, u and w--volume zones. 

zones by taking for the first zone the part of the 
volume fiiled with flame and for the second zone 
the part of the volume filled ~thnon-combustible 
gases. 

(2). Values of direct interchange factors and 
areas should be determined for the four geo- 
metrical cases shown in Fig. 3. The values can 
be taken from the tables in [IO] (which present 
values with the maximum error of O-5 per cent) 
or they may be calculated in an approximate 
analytical way [l I]. In the later case it is possible 
that the maximum error may approach 2 per 
cent of the total sum of heat quantities, absorbed 
and passing through the medium. In that case 
however tables or diagrams of special functions 
only of one argument (optical density of the 
medium) are necessary. Direct interchange 
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0 @ . 
FIG. 3, Cross sections for calculation of direct inter- 
change factors and areas: a-equation (21), &-equation 

(22), c-equation (23), d-equation (24). 

factors and areas of cross sections given in Fig. 3 
can be evaluated as follows : 

(4 KS = & wi ohd + N2 vv2) - N2 h4 - 

N2 Gdl, w 

where s is the length of the duct. 
Special functions of optical density of the 

medium M(Z), N&Z), NdZ) and S(Z) were 
defined in a previous paper [l l] and values of 
these factions are compiled in Table 1. It 
should be noted however that a better accuracy 

of inter~lation will be obtained when using 
Iogarithms of the functions also given in Table 1. 

The volume-wall interchange factors ykW are 
evaluated as sums of $JkZ according to equation 
(15): 

j/kto zit5k $ki, k L- I, 2, 3, 4. (25) 

In determining the sign of $ki it should be taken 
into consideration that every ray crosses the wall 
enclosing the volume w (Fig. 2) in two points. 
The interchange factor from A& to the surface 
is taken positive for the nearest point of inter- 
section and negative for the other point of 
intersection. So for the point A, in Fig. 2: 

YlU = %I5 -f- h3 - $16 - $1, (W 

If additivity of integrals is taken into account, 
ykti can be evaluated by the formula: 

yka = 1 - y~?fi -+&i, k :-= I, 2, 3, 4. (26) 

ifk 

In working our volume-wall interchange 
areas GR~, the dependence of the sign upon the 
location of the point Pfk must be again taken 
into account. For example dividing the surface 1 
into three regions I, II and III as shown in 
Fig. 2, we obtain 

G11w = H115 - HIM - HIK i- HIIB, 

G 1IIw = HlII5 - fflII6 --- HlIIi - fflII8, 

1 

(27) 
Gmr = H1rr15 + FJmre - H~rrr; -- HIITTK 

and by adding equations (27): 

GW = HE - Hii -t- fflrrts + HlI8 - 

~(lNlTI)6 - ~(III+IIII)S. (28) 

The same principle is used for evaluating other 
K&ES Of Gkw. 

The values of Gko are calculated from the 
formula : 

Gkv = Ffi - Gtu, -; Hkr, k = 1, 2, 3, 4. (29) 
i=l 
f@gc: 

(3). The overall interchange factors and areas 
are estimated according to (14) and (16). Under 
given conditions we have: 
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Table 1. Some values of the special functions M(Z), N,(Z), N%(Z) and S(Z) 

- 

Z 104 M(Z) IO* NI(Z) 1W Nz(Z) lo4 S(Z) log,, (104 it4) log,, (IO4 Nd log,, (10’ Np3 log,, (lol S) 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
5.5 
6.0 

;I; 

7.5 
8.0 

lcmo 
8818 
7793 
6899 
6116 
5429 
4823 
4289 
3816 
3399 
3028 
2700 
2408 
2150 
1919 
1714 
1532 
1369 
1224 
1095 
980 
564 
326 
190 
111 
65 
38 
22 
13 
8 
5 
3 
2 

10000 
6826 
5241 
4163 
3372 
2767 
2293 
1915 
1608 
1358 
1152 
980 
837 
717 
615 
529 
456 
394 
341 
296 
257 
129 
66 
35 
18 
10 
5 
3 
2 
1 

4244 10000 
3433 8326 
2836 7039 
2368 6001 
1994 5146 
1688 4432 
1436 3821 
1226 3321 
1050 2886 
903 2514 
777 2194 
671 1918 
580 1679 
503 1472 
436 1292 
379 1135 
330 998 
288 879 
251 774 
219 683 
192 603 
99 326 
52 179 
28 99 
15 55 
8 31 
4 18 
2 10 
1 6 
1 3 

2 
1 
1 

4moO 
3.9454 
3.8917 
398388 
3.7865 
3.7347 
3.6832 
3.6323 
3.5816 
3.5313 
3.4812 
3.4314 
3.3818 
3.3323 
3.2831 
3.2341 
3.1852 
3.1365 
3.0879 
3.0395 
2.9912 
2.7514 
25138 
2.2783 
2.0445 
1.8116 
1.5798 
I.3502 
I.1206 

4oooo 
3,8342 
3.7194 
3.6194 
3.5279 
34420 
3.3604 
3.2821 
3.2064 
3.1329 
3.0613 
2.9912 
2.9226 
2.8553 
2.7890 
2.7237 
2.6594 
2.5957 
2.5330 
2.4708 
24094 
2.1099 
1.8215 
1.5403 
1.2648 
1WOO 

3.6278 
3.5357 
3.4524 
3.3744 
3.2996 
3.2274 
3.1571 
3.0885 
3.0214 
2.9555 
2.8906 
2.8268 
2.7638 
2.7016 
2.6400 
2.5791 
2.4774 
2.4591 
2.3999 
2.3410 
2.2826 
1.9965 
1.7185 
14456 
1.1790 

4aOO 
3.9204 
3.8475 
3.7783 
3.7115 
36466 
3.5833 
35213 
3.4603 
34004 
3.3412 
3.2827 
3.2250 
3.1678 
3.1111 
3.0548 
2.9992 
2.9439 
2.8889 
2.8343 
2.7802 
2.5131 
2.2519 
1.9952 
1.7419 
1.4914 
1.2455 
1WOO 

- ~--. _ .- 

4 4 

#pki _ \“; 
sFu 

l&r $ku = #k& i, k = 1, 2, 3,4. ek, = Gkj + 
c 

; Grj gkf, k = 1,2, 3,4; 

u#i (30) 
i=l 

j = v, w. (33) 
4 

JTkt - F g Hut & = Hkt, i, k= 1,2,3,4. 
Equations (30) and (32) are to be used if the 

“=I’ 
U distribution of local radiant flux density is 

U&i-i (31) wanted. They may be applied also if the tempera- 
ture distribution of the walls is to be estimated. 

4 

c 

The number of calculation operations is depen- 

ykj =: Ykj T ; Grf $kt, k = 1, 2, 3,4; 
dent on the number of the points on the wall 
“k” chosen for calculation. 

j = v, w. 
By using equations (3 l), calculation is reduced 

(32) because of the condition & = &. If the 
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volume zones are located symmetrically a further 
reduction of computation is possible as shown 
in the following numerical example. 

(4) Final results are obtained by use of (17) 
and(l@wherei,k=1,2,3,4andj=v,w. 

NUMEIRXCAL EXAMPLE 

A furnace chamber of rectangular cross 
section (shown in Fig. 4) is examined. The 

--L 

0,4m 

3 

FIG. 4. Cross section of furnace chamber for numerical 
example: l-bottom of furnace; 2, 3, 4-adiabatic walls 
of furnace; o-non-combustible gases; w-flame zone. 

chamber is considered to be a long cylindrical 
duct, so the problem can be solved as a two- 
dimensional one. It is assumed that the radiant 
heat transfer proceeds from the gas medium 
to the bottom of the duct and the other walls 
are to be taken as adiabatic surfaces with zero 
resulting flux. The content of carbon dioxide 
in the combustion products of the gas fuel is 
8.2 per cent and that of the vapor is 17.8 per 
cent. Using (19) we find that with the character- 
istic size of the duct of 057 m [according to 

(20)] and with the given partial pressures of 
carbon dioxide and water vapor, the value of the 
absorption coefficient of the gas medium is 
k = 0.364 m-l. Some further information about 
the physical properties and technological data 
are given in Table 2. 

Our task is to determine the influence of 
various locations of burners on radiant heat 
transfer. Consider two cases : 

I. Flame comes into contact with the bottom 
of the duct, y = 0. 

2. Between the flame and the bottom there 
exists a gas layer of a thickness ofy = 0.7 m. 

The cross section of the flame is taken to be 
rectangular with a thickness of O-2 m and width 
equal to that of the chamber. 

Before solving this example it must be noted 
that the existence of adiabatic surfaces in the 
system leads to some modi~~ations of the 
problem. Since the system is symmetrical, it 
can be taken that Ez -= E,, HI2 = I& and 
Hs3 = & = ii,,. The resulting heat flux at the 
bottom is given as : 

Q res, I = a [(Ev - EJ GI, + 6% - Ed GIW -1- 
+ 2 (Et - Er) a&,, + (G - El> &al (34) 

and the unknown values of E, - El and E, - El 
are determined from the condition that the 
resulting heat fluxes are zero at adiabatic walls 
of the furnace : 

a& + 2&J (E, - El) = GW 

(E,. - EJ + c;‘sw (Ew - El> 

Calculation of radiant heat transfer is carried 
out for I m length of the duct and the results 
are given in Table 3. Numerical calculation 
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Table 2. Initial data for numerical example 

3oi 

The bottom of Adiabatic Zone of The zone’of 
the duct duct walls flame non-burning 

gases 

No. of zone on Fig. 3 
Temperature t “C 
Absorptivity of wall, a 
Black-body radiation 

density, E kW/m* 

1 2, 3,4 
loo0 - 12& lOs”O 

0.8 0.8 - 

153.6 - 271.1 176.8 

of the values given in Table 3 is illustrated for and 
the following cases : 

(1) For calculation of HI2 we take from Table 1 - 20.0487 R2, -?0.1369 I& - 
1 

1 

1: 
0.2 

N,(O) = 0.4244, N,[O.3642/(1 + O-16)] = r 0.1369 & = 0.1369 

0.2020 0.2 - - 
N,(O.364 x 0.4) = O-3 146 ; N,(O.364) = - 2 F40.1369 H,, + H,, - 

: 
0.2121 

and using formula (24) we have 

I 
0.2 
1 0.5378 ii,, = 0. 

i 
HI2 = 2 x 0.364 (O-4244 + 0.2020 - As an example we have: 

O-3146 - 0.2121) = 0.1369 m2/m. 

(2) For lower location of the flame we obtain : 
ii,, = % = ‘G = 0.0101 m2/m, 

H26 = 0.2; Hzs = 0.0909; Herr17 = 0.1316; where 

Hz15 = 0; H(21+211)7 = 0.0694; H25 = D= 

H(211+2111)5 = 0.1369 + 1 - 0.05476 - 0.02435 

and from equations (27) and (28) - O-06845 + 0.89244 - 0.06845 = 0.8843 

G2, = 0.2000 - 0.0909 f- 0.1316 $ 0 - - 0.02435 - 0.05476 + 1 

0.0694 - 0.1369 = 0.0344 m2/m. and 

(3) The wall-wall overall interchange areas & = 

are determined from equation system (31): 
+ o 

- O-05476 - 0.02435 

RIi,, - 270.1369 RI2 - F40.0487 RI3 = 0 
+ 0.1369 + 0.89244 - 0.06845 = 0.00892 

+ 0.0487 - 0.05476 + 1 

- go.1369 & + (1 cGO.5378) RI2 - 
(4). For lower location of the flame, the value 

of Cl, is calculated by (33) as follows: 

0.2 
K40.1369 RI3 = 0.1369 G1, = O@iO8 + ;+; 0.0101 x 0.408 + 

o-2 
--40*M87 & - 270.1369 Ef,, + 2 ‘; 0.1586 x 0.0344 + ;; 0.0576 

I&, = 0.0487 J X 0.0057 = 0.0434 m2/m. 
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Table 3. The c~fculutio~ of the radiant heat exchange in the fiwtace chamber 

w-- 

Title Svmbol Dimension 

~~~__ ~~.._~~__~~__ ._ ___ 

Value by the flame Iocation 
No. of the -- 

formula lower 

1. The values of wall- 
wall direct inter- 
change areas 

2. The values of 
VOlUe-wall 
direct interchange 
areas 

3. The values of wall- 
wall overall inter- 
change areas 

4. The values, of 
volume-wall overall 
interchange areas 

5. The differences of 
black-body energy 
emissions 

6. The resulting heat 
flux 

Hl3 
Hl6 
47 
ff24 
Hea, HM 
Haa> HM 
H3S 
H,, 

HIa. f&t Hza Ha.r 
fbr HI, 
Hars, ffars 
Hw+Iam, Ht41+4I1~ 

H(an+aIII)s, ff[4II+4111)5 

Ham7, H41117 

ffw, H3a 

Glw 

Gaw, G4cu 

G SW 

Gl, 

Gar, G4c 

G3v 

P WS. I kW/m (34) 

m*/m (23) 

rn’irn 

ml/m (28) 

m yrn 

m2/m 

(29) 

(311 

m”/m 

(241 

(33) 

kW/mZ (361 

0.0487 
0.4ooo 
0.2204 
0.5378 
@2ooo 
0.0909 
0,0487 
0.0652 

upper --- 
0.0487 
0.0762 
0.0560 
0.5378 
0.2OOu 
0.1059 
O-1702 
0.2936 

0+1369 01369 
0.0694 0.0076 
0 0.1272 
0.0694 01348 
0.1369 0.0903 
0.1316 0.0396 
0.0054 @0470 

OG408 oGo5o 
0.0344 0.0358 
0.0057 0.0294 

0.0366 0.0725 
0.1540 0.1526 
0.0718 048 1 

O*OlOl 00101 
Cl586 @I586 
0.0576 0.0576 
0.0827 0.0827 
0.5673 0.5673 

0.0434 0.0082 
0.0426 0.0432 
O-009 1 0.0320 
00486 0.0840 
0.1826 0.1820 
0*0830 0.0601 

25.8 
24‘4 

11.1 

(5). In case of lower location of the flame - 0.2538(& - El) + 0.3919(& - E1) = 
equation system (36) is as: = 3.000 

-j- 0~4’7900& - El) - 0.1269(& - E1) = 
and it is found that Ez - El = 25.8 kW/m2 and 
E3 - El = 24.4 kW/m2. Using these values, the 

= 9.267 resulting heat flux is calculated from formula 
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Table 4, A c~m~~~son between the numerics example and the ex~er~rne~ta~ data 

No. Character Dimension Numerical example Experimental data 

: 
Length of the furnace chamber m co 0.7 
Absorbitivity of the walls and 

bottom 
G 

0.8 unknown 
3 Temperature of the bottom 1000 unknown, can be esti- 

mated to 950-1050 
4 Heat flux at the walls - walls are considered UIlkllOWIi 

to be as adiabatic 
surfaces 

5 Temperature field in the chamber - two discrete zones continuous, having a 
peak as a flame zone 

6 Temperature of the flame zone “C 1200 1100-1250 
7 Temperature of non-burning 

gaseous zone “C 1050 1010-1100 
8 Resulting heat flux at the bottom 

reduced to the 1 m length of 
the chamber : 

at lower location of the flame kW/m 11.1 1@5 
at upper location of the flame kW/m 9-f 8.8 

9 Difference of heat transfer at 
various locations of the flame per cent 22 19 

(39, as 

Q ,.eR, 1 = 0.8 (23.2 x 0.0486 + 118.1 x 

0.0434 + 2 x 258 x O-1586 x 

0.8 + O-8 x 24.4 x O-0576) = 11.1 

kW/m. 

DISCUSSION 

It is of interest to compare the results of the 
calculation method with the real conditions. 
With this in mind, the initial data of the numerical 
example were chosen to fit the experimental 
data of Zahkarikov fl2, 131. However, it was 
necessary to choose some approximate data 
in the numerical example, since not all factors 
were determined in experiments. Moreover the 
calculation would become rather complicated 
if we accounted for the less important factors. 

In Table 4 results and some initial data of the 
numerical example are compared with those of 
the experiment. The numerical calculation can 
be seen to yield satisfactory results. It should 
be noted that absolute values of resulting radiant 
flux decrease rapidly if some lower value for the 
tem~ra~re of the volume zones is chosen. 
The numerical calculation shows that when the 
flame temperature is 118O”C, the resulting flux 

at the fewer location of the flame is 102 
kWjm and at the higher location of the 
flame it is onty 85 kW/m, Decreases in relative 
heat transfer at various locations of the flame 
vary between 20 and 22 per cent. This result 
can be used to explain the experimental fact, 
that at higher loads of the furnace chamber, the 
mentioned difference increases [12, 131. 

The strong dependence of heat transfer on 
the temperature conditions mitigates against 
the attainment of high accuracy in the resulting 
heat flux. This method can be recommended 
only for approximate calculation. In this con- 
nexion increasing the number of zones is not 
effective because current methods do not allow 
of the use of the temperature distribution in the 
medium as initial data. 

However, being somewhat approximate, the 
method is effective in solving problems where 
relative heat-transfer conditions are studied, for 
example in problems of heat transfer at various 
locations of the flame in the furnace chamber, 
and in problems where resulting heat flux 
distribution on the walls of the furnace is to be 
determined. It follows from the above example, 
that the method can give approximate results 
even in case of very short ducts. 
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Abstract-An approximate radiant heat-transfer calculation method of dealing with cylindrical 
systems of rectangular cross section is presented in the paper. Under given conditions, the two- 
dimensional theory may be applied. A system of gray walls is considered, filled with an absorbing 
medium having no reflectivity and no refractivity. The method of solution of the problem is based 
on integral equations. Calculation can be carried out in the following way: 

1. The system is divided into zones. 

2. For a duct of rectangular cross section, having four surface zones and two volume zones, direct 
interchange factors and areas are determined by (21) to (29). 

3. Determination of overall interchange areas and factors is carried out by using (30) to (33). 

4. Calculation of resulting heat fluxes or zone temperatures is carried out using (17) and (18). 

The method is ill~trated by an exampie. The numerical part of the example is given in Table 3, 
whilst in Table 4 some experimental data are compared with initial conditions and results of the 
numerical example. The method can be used for solving problems on radiant heat transfer if various 
locations of the flame in the furnace chamber are to be taken into consideration. The method may 

also be useful in determining resulting heat flux distribution in a cross section of the furnace. 

R&arm&--Une methode de calcul approximatif du rayonnement de la chaleur dans un systeme 
cyliidrique ayant un profil rectangulaire est prtisentee. 

Dans des conditions domrees on peut employer une theorie bidimensionnelle. Un systeme a surfaces 
grises, rempli d’un milieu qui absorbe, mais ne refltte et refracte le rayonnement, est &die. La 
methode de la solution du probleme est fond&e sur les Cquations integrales. Le calcul stffectue dans 
l’ordre suivant : 

(1) On partage en zones. 

(2) Dans le cas d’un canal rectangulaire, diit chaque paroi est prise pour une zone superficielle et 
dont ie volume est devise en deux zones, les facteurs et les surfaces d’echange de chaleur directes 
sont caIculQ a l’aide des formtrIes (Zlj(29). 

(3) Les facteurs et les surfaces d&change resultants sont calcul&s B l’aide des formules (30)_(33). 

(4) On calcule la quantite &.ultante de la chaleur transmise (ou les temperatures zonalesj d’apn% les 
for-mules (17) et (18). 
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La methode est illust& dun exemple. La part num~rique de l’exemple est do&e dam la table 3 ; 
dam la table 4 sont quelques don&es experimentales comparees aux dom&es initiales et aux rksultats 
obtenus de l’exemple. La methode peut etre employee pour resoudre fes problemes de foyer compte 
tenu de la position de la flamme. La methode peut Btre employee egalement pour determiner la courbe 

de distribution d’echange de chaleur dans les coupes transversales du foyer. 

Zusammenfassung--Eine Methode zur annahernden Berechnung der Warmestrahlung in einem 
zylindrischen System mit rechtwinkligem Querschnitt ist prlsentiert. In gegebenen Bedingungen kann 
eine zweidimensionale Theorie angewendet werden. Ein System mit grauen Wandungen und einem 
absorbierenden, doch nicht reflektierenden und refraktierenden Medium ist in Betracht gezogen. Die 
Losung des Problems wird durch Integralgleichungen erhalten. Die Berechnung kann in folgender 
Ordnung durchgefiihrt werden: 

(1) Das System ist in Zonen zu verteilen. 

(2) Fur den Kanal mit r~htwi~ligen Querschnitt, mit 4 F&hen- und 2 Raumzonen sind die 
Faktoren und Fhichen des direkten W~~e~~rg~gs gem&s den Formcln (21~(29) zu be- 
rechenen. 

(3) Die resultierenden ijbergangsfaktoren und -FIachen werden nach den Formeln (30)-(33) 
berechnet. 

(4) Man berechnet die resultierenden iibertragenen WBrmemengen (oder dir Zonentemperaturen) 
nach den Formeln (17) und (18). 

Die Methode ist mit einem Beispiel illustriert. Der numerische Teil des Beispiels ist in Zahlentafel3 
angegeben, wtihrend in Zahlentafel 4 einige Experimentaldaten mit den Ausgangsdaten und Ergeb- 
nissen des Beispiels vergleichen werden. Die Methode ist bei Feuerraumproblemen anwendbar, wenn 
die Lage der Flamme beriicksichtingt wird. Auch zur Bestimmun der Verteilungskurve des Warme- 

iibergangs in Feuerraumquerschnitten l’dsst sich die Methode vorteilhaft anwenden. 


