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APPROXIMATION CALCULATION OF RADIANT HEAT
TRANSFER IN A DUCT OF RECTANGULAR
CROSS SECTION
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Anpnoramua-—IIpUBOIATCA HOKOTOPHE YKABAHMA K IPHOIMKEHHOMY DPACYeTy Jy4YuCToro
TenmoofMena B HUMMHADHYECKON CHCTeMe ¢ NPAMOYrONbHHM NONEPEYHHM cedenneM. B
YCHOBEAX, NPegyCMOTPEHHKX B palore, NpuMeHnMa ABYXMepHAs TeOpHA. PaccmarpusaercH
CHCTEeMA U3 CepHX II0BEPXHOCTEH, 3aONEEHHAA TOTJIOMAKIeH cpenolf, nzrydenue B KOTOpoit
HE OTPAHALTCA M He npeaoMaserca. MeToq pemieHus npo6ieMEt OCHOBRIBAOTCA HA HHTErPANb-
HHIX ypaBHeHHAX. Pacder DpOMBBOUTCA B CJACKYIOINEM HOPHJKE :

1. Crcrema pacnpejenefieTc Ha B0HH ;

2. B ciuydae KaHANA C© IHPAMOYrOJBHHM CEYEHWEM IHPH 4-X NOBEPXHOCTHHX H 2-X
O0BEMHEIX 30HAaX BHAYEHHH B3AMMHEIX MOBEPXHOCTEN ¥ YPONBHX Ko3(OuIHEHTOB
OPAMOro ny4mcToro ofMena BeMucIALTCA 1m0 Popmymam (21)-(29);

3. Hauenusa paspeIIAOINAX BBANMHLX NOBEPXHOCTEH U YTOXBHX KO2(D(OHONEHTOB BHYMC-
asoTea no gopmyaam (30)-(33);

4. PeaysibraTHBHEE JMyducThie HOTOKU (I TEMHEDATYDH B0H) ONDPENENMIOTCH IpUMeHe-
aueM Gopuya (17) un (18),

Meron mnocTpuposan npuMepoM. Xof BRIYHCJHEHHA NPUMEpA HAH B Tabn. 3, a B tabm. 4
CPABHUBAOTCA HEHOTOPHE BKCIEPHMEHTANLHEE IAHHEE ¢ HMCXOXHBIMU . YCIOBUAME M pes-
YIABTATAMM YHCIEHHOro npumepa. Merom Moer OHTh NPHMeHEH NPH pemeHHM TpoOieMm
JAYYHCTOTO TeNR000MeHa ¢ yYeTOM pacnoiomenns daxena B Tonke. MeToy sBasercs Tamxe
TIOJIEBHBIM, €CNM DPACCMATPUBACTCH DacupefeseHHe PesyNbTATHBHOIO JIYYHCTOTO MOTOKA B

TOTMePeYHOM CEYEeHUH TOIKH.

NOMENCLATURE k, absorption coefficient of the
A, B, C, local points in radiating medium, m—1;
system, see Fig. 1; /, beam length, see Fig. 1 and
a, absorptivity of walls; equation (20}, m;
D, determinant used in the M, N, S, special functions in equa-
example; tions {21)-(24), values are
E =577 % 10-® black-body radiation den- given in Table 1;
Te, sity, W/m?; P, pressure of gas medium in
F, area of surface zone, m?; (19), kg/cm?;
G, volume-wall  interchange g, heat flux, W;
area, defined by (15), m2; q, heat flux density, W/m?;
H, wall-wall interchange area, r, reflectivity of the walls;
defined by (12) and (13), S, length of the duct, see (23)
m?; and (24), m;
h, height of the duct, see Fig. T, absolute temperature, °K;
3, m; z, temperature, °C;
K L, expressions in equation (1), Vv, volume, m?;
defined by (2), m-2; X, co-ordinate, Fig. 3, m;
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7, altitude of flame, Fig. 4, m;

Greek symbols

T, functions of equations {(4)~
(10) defined by equations
(5) and (9), m~?;

Vs volume-wall  interchange
factor defined by (15);

7, volume radiation density,
defined by (3), W/m3;

#, angle, see Fig. 1;

o, geometrical length, defined
by Fig. 3, m;

¥, wall-wall interchange
factor, defined by (11) and
(13).

Subscripts

i, k, refers to surface zone;

Jvsw, refers to volume zone;

m, total number of surface
zones;

n, total number of volume
zones;

u, refers to surface or volume
zone;

eff, effective flux from the sur-
face;

inc, radiation flux incident on
the surface;

res, resulting flux through the
surface;

1,2,3,4.... refers to surface zone;

1, 2, subscripts at N used for
separate kinds of functions
of N.

INTRODUCTION

THE theory of radiant heat transfer in a system
of surfaces with an absorbing medium has been
well established theoretically [1-5], but for
practical calculations of such systems the over-
simplified method based on the application of
the effective thickness of the radiating layer is
still used in most cases. This situation is brought
about by the complexity of calculation when the
theory is applied. The method proposed by Hottel
and Cohen [6] also demands much computing
work. However in a number of furnaces and duct-
like combustion chambers heat radiation and ab-
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sorption of bottoms may be practically neglected.
Conditions approximately correspond to the
case when a radiating system is infinitely long
in one dimension and the problem is therefore
two-dimensional. Plainly considerable saving
in computation can be achieved if a three-
dimensional problem is reduced to a two-
dimensional one.

The purpose of the paper is to suggest some
methods involving the application of the two-
dimensional theory to calculating radiant heat
transfer in cylindrical systems of rectangular cross
section. The following assumptions are made:

1. The process of radiant heat transfer takes
place at conditions of local equilibrium.

2. The flow and heat conduction of gray gas
medium are neglected.

3. The absorption coefficient of the medium
is taken to be constant throughout the radiating
system, and the reflectivity and refractivity of
the medium are assumed to be zero.

4. The Lambert law is assumed applicable
and all the surfaces of the radiating system are
considered gray.

Since the present solution of the problem is
reduced to the division of the radiating system
into separate zones, more accurate results can
be obtained, the less the optical density of the
medium.

SOME THEORETICAL ASPECTS

The density of effective radiant flux leaving
the point A (Fig. 1) can be expressed as the sum
of the emitted flux density a (4) E(A4) and the
reflected flux density 7 (A) gine (4), where a (4)
and r (4) are absorptivity and reflectivity of the
walls at the point 4, and E (4) is the black-body
radiation density of 1 m? of the surface at A.
The flux density of incident radiation gine (A4)
is the sum of the effective flux density, reaching
A from the other points B of the walls, and of
the flux density emitted by the radiating medium
from points C. The equation of the effective
flux density [1-5] with the present assumptions
is as follows:

Gine (A) = a (4) E(4) +r (4) Upsqeff (BY

K(AB)dFB+J ;n(C)L(AC)dV} (1)
Vv i
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FiG. 1. Schematic representation of radiating system
{equation (1)].

where
9
K(AB) :%exp (—klAB),
AB
s 2

cos ¥

L (AB) = —lzféexp(—kuc)
LiyTe

and k is the absorption coefficient of the medium,
1is the length of the beam, ¢} is the angle between
the beam and the normal to the wall.

For the volume radiation density 7 (C) the
well-known formula can be written:

7 (C) = 4kE (C). (3)

In the theory of integral equations the solution
of equation (1) is given as follows:

Gesr (A) = a (A) E(A) + r (A) [ [, kE(C)
L(AC)dV + [rya(B)E(B)I'(AB)dFg +
{pgr(B) |, kE(C) L (BC)I'(AB)dV dFg
4

where the function I' (4B) of equation (1) is a
I'(4B) = K(AB) +

solution of integral equations:

J#gr(B) K (PB) I (AP) dF, 1 5
I'(AB) = K (4B) +

(74 (B) K (AP) T'(PB) dFp. J
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According to the second law of thermodynamics
it follows from equation (4) that

I, kL(AC)dV + [rpa (B)I'(AB)dFs +
§rgr(B) [, kL (BC) I'(4B)dV dFp = 1.
6

Hence, according to equations (4) and (6) one
obtains the resulting heat flux density at 4:

qres (A) = a(4) {fry [E(B) — E(4)]
a(B) I'(AB)dFg + [, [E(C) —
E(A)] [L(AC) 4+ [rgr(B)L(BC)

I'(AB)dFglkdV}. @

The solution of the problem is given in
equations (5) and (7). It is interesting to obtain
however an approximate solution which is more
suitable for application to design and computa-
tion. It is usually realized by division of the
system into zones with constant temperatures
and physical properties. Thus if £ (Cy) = const.
is assumed at each volume zone j, the volume
integrals in equations (1)-(7) may be expressed
by means of surface integrals taken over the
whole surface F; enclosing the whole zone

volume V;:
{v; kL (ACy) dV; = §r k (ACj) dFy.  (8)

It would also serve the purpose to define I (4C)
as follows:

I'(AC) = K (AC) +
[rpr(BYK(BC)T' (4B)dFs  (9)

If the system consists of m surface zones F;
and n volume zones V7, then equation (7) may
be written separately for each surface zone k
by means of equations (8) and (9):

re (48) = ax { £ i [E (B) — E (4]
{7, T (AxB1) dIF—i +
é [E(C) — E ()] §r, T (4xC)) dFy},
k=1,2,3,...,m (10)

Computing the resulting heat flux density
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gres (Ax), the direct angle factors are applied,
defined as

$ri = [, K (4xBy) dF;,
and the direct interchange areas defined as
Hys = [, fxs dFp. (12)

If the part of heat quantity transferred by
multiple reflections is taken into consideration,
the overall interchange factors and areas are
defined as follows:

i = [, Ij (AxBi)dF;, |
Hyi = [y xi dFp.. |

The leading angle factors and interchange
areas are calculated by integration of equations
(5).

When the radiating system is divided into
zones, it is usually assumed that the factors
may be approximately replaced by their average
values Hyi/Fr. With this assumption equations
(5) are reduced to a system of linear algebraic
equations:

Fy i -
(—E — Hﬁ) f:silki

r
m ru .
- EE Hui v == fiis
i o4

(1n

(13)

Fy . —
= Hui chu

u

qu ) Vi =~
(;“; - Hu‘ Fi sz =
vk

=H, bk=12,3..

o M.

P

The volume-wall interchange factors and
areas can be expressed as

vies = $r7; K (AxCy) dFy, ‘}l
7k = $r; I (AxCy) dF, %

Grs = [F, yk; dFy,
Grj = [r; x5 dF.

Assuming y,; may be approximately replaced
by their average values Gy/Fy we may calculate
values of yx; and Gyy from algebraic equations.
Then equations (9) can be replaced by the
system of algebraic equations:

(15
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n:
_ Py -
Frj == Yij -+ F Guj Prus
u
u -1
m

¢ (16)

»

- Y"—\ T -
Gy = Gy + Z/ F'u; Gus Hyn,
Hes]

k==1,2,3,...,m;

Proceeding from this we may recommend the
following procedure for radiative heat-transfer
calculation:

J= 1,23 .0

(1). The system is divided into surface and
volume zones. The division should be made in
such a way that each zone is characterized by
constant temperature and physical properties,
In the general case the solutions of algebraic
equations (14) and (16) are not exactly the
solutions of integral equations (5) and (9).
the accuracy of results increasing with increase
in the number of zones. For approximate
calculation the smallest possible number of
zones is desirable since this considerably
reduces computation.

{2). The direct interchange factors and areas
$ri, Hrs, ves, Gri are calculated. Some of the
values of % and Hy; are determined directly
while others are obtained from application of
symmetry Hyg; = Hjr and the property of being
able to add integrals Hg: + Hiy = Hy, 114 and
b + l/l]m e l/l)c, iru. Calculation of Vij OF ij
is reduced to determination of the values of
r: or Hy; and to setting up their algebraic
sums according to equation (15). If the distance
of the point A from the surface F; becomes zero,
¥rj == 1, and at zero distance between parallel
surfaces Fy and F;, Hy; == Fi if Fi > F;, and
Hyj = F; if F > Fj.

(3). The values of overall interchange factors
and areas $xi, Hyi, 715, Gi: are obtained by
solving equations (14) and (16).

(4). Equation (10) of the resulting heat flux
density at Ay can be written in the form:

Gres (AR) = ax {3, ai [E (B) — E (AD] i

i=1

+REC©) ~EWlm; (D)

and the whole resulting heat quantity received
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or emitted by the surface Fy, is obtained by
integrating function (17) over the surface Fj:

Qre k= ax {3 au [E (B) — E (49)]

+ 2 E(C) = E(D] Gy} (19)
P
It should be noted that the majority of assump-
tions used in the present method are hardly
relevant since most of the initial data are known
only approximately and usually results of high
accuracy are not demanded. Possibly an assump-
tion of prime importance is one of gray radiation
of gas medium. If selective absorbtivity and
emissivity of gas medium are taken into account,
then a correct solution of the problem in the
case of gray walls becomes very complicated
and some results are obtained only for a plane
gas layer [7]. However it is shown [8] that
radiation of gas medium may be approximately
considered gray. If the combustion products of
the fuel are taken as a “gray” gas medium, the
value of the absorption coefficient can be
_calculated by the formula recommended in [8]:

k=(1—038 x 10-°T) (0-8

+ 1~6PI;20) \/(P 0024;1’1{20) (19)

where T is the medium temperature. To deter-
mine the mean beam length /, the formula of the
characteristic size may be recommended:

.
=,

(20)

where F is determined as the whole area of
surfaces enclosing the volume V of the radiant
system.

Calculation is more complicated but gives
greater accuracy if the gas medium is considered
gray in one part of the spectrum and transparent
in the other part [6, 9]. Application of this rule
becomes more complicated if radiation of solid
dust particles in a gas medium is to be allowed
for.

A DUCT OF RECTANGULAR
CROSS SECTION

Radiation in a system having the form of a
cylindrical duct of rectangular cross section
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will be considered next. The problem is reduced
to the two-dimensional case, if the temperature
field and the physical properties along the length
of the duct are assumed to be constant and the
radiation effects of the bottoms are not taken
into account. The schedule of calculation of
radiant heat transfer is given in the previous
section. Additional recommendations are pre-
sented as follows:

(D). In principle there is no difficulty in taking
any number of zones, but computation is rarely
successful without experimental data on tempera-
ture distribution. It is therefore assumed that
there are two volume zones only, as shown in
Fig. 2. The volume can be divided into two

3
7
v
L] & w & 2
5
t i
t i
J i
T {11'{.271'
4, /

FiG. 2. Rectangular cross section of duct, 1-4—surface
zones, v and w—volume zones.

zones by taking for the first zone the part of the
volume filled with flame and for the second zone
the part of the volume filled with non-combustible
gases.

(2). Values of direct interchange factors and
areas should be determined for the four geo-
metrical cases shown in Fig. 3. The values can
be taken from the tables in [10] (which present
values with the maximum error of (5 per cent)
or they may be calculated in an approximate
analytical way [11]. In the later case it is possible
that the maximum error may approach 2 per
cent of the total sum of heat quantities, absorbed
and passing through the medium. In that case
however tables or diagrams of special functions
only of one argument (optical density of the
medium) are necessary. Direct interchange
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Fic. 3, Cross sections for calculation of direct inter-
change factors and areas: a—equation (21), b—equation
(22), e—equation (23), d—equation (24).

factors and areas of cross sections given in Fig. 3
can be evaluated as follows:

@) e = Y12y — Yz,

X
he =5 {M (khy + [S (kh) —

en
v
) o = |Pr TR @)

1
© Ho=3{lnt pe= pa ol B (5, +

i-i—lﬁmm—Mmmﬂ»aa
Ps P2 Ps

@) Hyy =5 [Ny (k) + Ny (kpa) — Na k) —
NyGkpdl  (24)

where s is the length of the duct.

Special functions of optical density of the
medium M(Z), N(Z), NfZ) and S(Z) were
defined in a previous paper [11] and values of
these functions are compiled in Table 1. It
should be noted however that a better accuracy
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of interpolation will be obtained when using
logarithms of the functions also given in Table 1.
The volume-wall interchange factors yg,, are
evaluated as sums of x; according to equation
(15):
8
Yew =%, + i, k= 1,2, 3, 4.
P=5
In determining the sign of ¢ it should be taken
into consideration that every ray crosses the wall
enclosing the volume w (Fig. 2) in two points.
The interchange factor from A4y to the surface
is taken positive for the nearest point of inter-
section and negative for the other point of
intersection. So for the point 4, in Fig. 2:

Yiw = ‘/’15 -+ S[‘Js - S[’m - ‘ﬁl?

If additivity of integrals is taken into account,
ykrv can be evaluated by the formula:

(25)

(253)

4
veo =1 —yew — X, k =1,2,3,4. (26)
ik
In working our volume-wall interchange
areas Gy, the dependence of the sign upon the
location of the point 4; must be again taken
into account. For example dividing the surface 1
into three regions I, II and I as shown in
Fig. 2, we obtain

Gutw = Hus — Hue — Hirr + His,
Gittw = Hints — Hine — Hitry — Hins,
Gure = Hurs + Hine — Hims — Hyms

and by adding equations (27):

27

Gy = His — Hi7 -+ Hinre + His —
Harsims — Hamms. (28)

The same principle is used for evaluating other
values of Gyuw.

The values of Gy are calculated from the
formula:

4
Gkv - Flc - ka ""'Z Hkis k == la 23 33 4' (29)
ik
(3). The overall interchange factors and areas
are estimated according to (14) and (16). Under
given conditions we have:
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Table 1. Some values of the special functions M(Z), N\(Z), N(Z) and S(Z)

Z 10t M(Z) 10t N(Z) 10¢ Ny(Z) 108 S(Z) log,, (10* M) log,, (10* Ny) log;, (10* Ny) log,, (104 S)
0 10000 10000 4244 10000 4-0000 4-0000 3-6278 4-000
01 8818 6826 3433 8326 3:9454 3-8342 3-5357 3-9204
0-2 7793 5241 2836 7039 3-8917 3-7194 3-4524 3-8475
03 6899 4163 2368 6001 3-8388 3:6194 3:3744 3-7783
0-4 6116 3372 1994 5146 3-7865 3-5279 3-2996 3-7115
05 5429 2767 1688 4432 3-7347 3-4420 3:2274 3-6466
06 4823 2293 1436 3821 3-6832 3:3604 3:1571 3:5833
07 4289 1915 1226 3321 3-6323 3-2821 3-0885 3-5213
08 3816 1608 1050 2886 3:5816 3-2064 3-0214 3:4603
09 3399 1358 903 2514 3-5313 3-1329 2:9555 3-4004
1-0 3028 1152 71 2194 3:4812 3-0613 2-8906 3-3412
11 2700 980 671 1918 34314 2:9912 2-8268 3-2827
12 2408 837 580 1679 3-3818 2:9226 2-7638 3-2250
1-3 2150 77 503 1472 3-3323 2-8553 2-7016 3-1678
1-4 1919 615 436 1292 3:2831 2:7890 2:6400 31111
1-5 1714 529 379 1135 3-2341 2-7237 2:5791 3-0548
1-6 1532 456 330 998 3-1852 2-6594 2:4774 2-9992
17 1369 394 288 879 3-1365 2:5957 2-4591 2-9439
1-8 1224 341 251 774 3-0879 2:5330 2-3999 2-8889
19 1095 296 219 683 3-0395 2:4708 2:3410 2-8343
2:0 980 257 192 603 2:9912 2-4094 2:2826 2-7802
2:5 564 129 99 326 27514 2-1099 1-9965 2-5131
30 326 66 52 179 2:5138 1-8215 1-7185 2-2519
35 190 35 28 99 2-2783 1-5403 1-4456 1-9952
40 111 18 15 55 2:0445 12648 1-1790 1-7419
45 65 10 8 31 1-8116 1-0000 1-4914
50 38 5 4 18 1-5798 1-2455
55 22 3 2 10 1-3502 1-0000
60 13 2 1 6 1-1206

65 8 1 1 3

7-0 5 2

75 3 1

80 2 1

4
'ﬁki - Y‘]'?Zlfui bru = b i, k=1,2,3,4.
e’
(30)

=1
i

4

Hy — TﬁHui Hyw = Hyi, i, k=1,2,3,4.
o, fu

(3D

u=1
u=+i

4
ki = ykj - E F G0 k=1,234;
i=1

J=u0,w.

(32

4
z r

ij=ij+ Ft‘foHki, k= 19 23 3’4;
i=1

j=uv,w 33)

Equations (30) and (32) are to be used if the
distribution of local radiant flux density is
wanted. They may be applied also if the tempera-
ture distribution of the walls is to be estimated.
The number of calculation operations is depen-
dent on the number of the points on the wall
“k’ chosen for calculation.

By using equations (31), calculation is reduced
because of the condition Hy; = Hyu. If the



300

volume zones are located symmetrically a further
reduction of computation is possible as shown
in the following numerical example.

(4) Final results are obtained by use of (17)
and (18) where i,k =1,2,3,4 and j == v, w.

NUMERICAL EXAMPLE
A furnace chamber of rectangular cross
section (shown in Fig. 4) is examined. The

0,9m

3
2222727,

,O0m
a2

TR

Fic. 4. Cross section of furnace chamber for numerical
example: 1—bottom of furnace; 2, 3, 4—adiabatic walls
of furnace; v—mnon-combustible gases; w—flame zone.

chamber is considered to be a long cylindrical
duct, so the problem can be solved as a two-
dimensional one. It is assumed that the radiant
heat transfer proceeds from the gas medium
to the bottom of the duct and the other walls
are to be taken as adiabatic surfaces with zero
resulting flux. The content of carbon dioxide
in the combustion products of the gas fuel is
8-2 per cent and that of the vapor is 17-8 per
cent. Using (19) we find that with the character-
istic size of the duct of 0-57 m [according to
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{20)] and with the given partial pressures of
carbon dioxide and water vapor, the value of the
absorption coefficient of the gas medium is
k = 0-364 m~1. Some further information about
the physical properties and technological data
are given in Table 2.

Our task is to determine the influence of
various locations of burners on radiant heat
transfer. Consider two cases:

1. Flame comes into contact with the bottom
of the duct, y = 0.

2. Between the flame and the bottom there
exists a gas layer of a thicknessof y = 0-7m.

The cross section of the flame is taken to be
rectangular with a thickness of 0-2 m and width
equal to that of the chamber.

Before solving this example it must be noted
that the existence of adiabatic surfaces in the
system leads to some modifications of the
problem. Since the system is symmetrical, it
can be taken that E,=E, H,= H;, and
H,; = H,, = H,,. The resulting heat flux at the
bottom is given as:

QT%‘, 1=4a [(Ev - E]) le + (Ew — El) le -
+2(E, — Ey) aﬁlz + (Es — Ey) Hlaa] (34)

and the unknown values of E; — E,and E3 — E;

are determined from the condition that the

resulting heat fluxes are zero at adiabatic walls
of the furnace:

G27J (E’L' - Eg) + G2w (Ew - EZ) + dﬁm 7
(E, — E») + aﬁw (E; — E) =0.
- _ v (3%
G37} (Ev - Es) 4‘ Gsu: (Ew i Ea) + aHlS
(E, — E3) + 2aH12 (E; — E3) =0,
or
(oo + Gaw -+ 2aHyp) (E, — Ey) — 7
afly, (E; — Ep) = Gop (Ey — Ep) +
sow (Ew — Ey),
G o L (36)
— 2aH, (Ey, — Ey) + (Gar + Gaw +
af,, + 201712) (Ey — E) = G
(E’l‘ - 1) ’+‘ Gﬂw (Eur - El) J

Calculation of radiant heat transfer is carried
out for 1 m length of the duct and the results
are given in Table 3. Numerical calculation
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Table 2. Initial data for numerical example

The bottom of  Adiabatic Zone of The zoneYof
the duct duct walls flame non-burning
gases
No. of zone on Fig. 3 1 2,3,4 W v
Temperature 1°C 1000 — 1200 1050
Absorptivity of wall, a 0-8 0-8 — —
Black-body radiation
density, E kW/m? 153-6 — 2717 1768
of the values given in Table 3 is illustrated for and

the following cases:

(1) For calculation of H,, we take from Table
1 .

Ny(0) = 0-4244, N,[0-364/(1 + 0-16)] =
0-2020
Ny(0-364 x 0-4) = 0-3146; Ny0-364) =
0-2121
and using formula (24) we have
H,, =2 X 0-364 (0-4244 - 0-2020 —
0-3146 — 0-2121) = 0-1369 m?/m.
(2) For lower location of the flame we obtain:
Hig =0-2; Hzg =0:0909; Horr; = 0-1316;
Ha15 = 0; Hertemr = 0:0694; Has =
Henenms = 0-1369
and from equations (27) and (28)
Gay = 0-2000 — 0-0909 - 0-1316 + 0 —
0-0694 — 0-1369 = 0-0344 m?/m.

(3) The wall-wall overall interchange areas
are determined from equation system (31):

_ 0-2 _ 02 _ 1
iy — 27 01369 Hy, — 200487 A, — 0

02 _ 02 _

~ 5401369 Hyy + (1 T0-5378) Ay, —
02 _

5401369 Hy; = 01369

02 ~ 02 _
— 5400487 Ay — 201369 A, +

Hyy = 0-0487 J

02 _ 02 _
( 1 — 0—.40-0487) Ay — 1 01369 Ay, —

0-2 _
T 0-1369 H,, = 0-1369
>
0-2 _ _
b 2 0710‘1369 H21 + H22 —_—
0—i2—0-5378 H, =0. |
As an example we have:
_— Dy, _ 0-00892 . 2
Hy = D = 08843 = 0-0101 m?*/m,
where
D =
+1 — 0-05476 — 0-02435
— 006845 + 0-89244 — 0-06845 | = 0-8843
— 002435 — 0-05476 - 1
and
Du =
+0 — 0:05476 — 0-02435
+ 01369 -+ 0-89244 — 0-06845 | = 0-:00892
+ 0-0487 — 0:05476 4+ 1

(4). For lower location of the flame, the value
of G is calculated by (33) as follows:

0-8
Giw = 0-0408 + 04 0-0101 x 0-408 +

-8 -8
2 OT 0-1586 x 0-0344 4 ?TZ 0-0576

X 0-0057 = 0-0434 m?/m.
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Table 3. The calculation of the radiant heat exchange in the furnace chamber

Value by the flame location

Title Symbol Dimension No. of the
formula lower upper
1. The values of wall- Hi, m2/m 23) 0-0487 00487
wall direct inter- Hy; 0-4000 00762
change areas H,; 0-2204 0-0560
Hyy 0-5378 0-5378
Hy, Hys 0-2000 0-2000
Hye, Hy 0-0909 3-1059
Hs, 0-0487 0-1702
Hy, 0-0652 0-2936
Hyy, Hyy, Hyyy Hyy m*m (24) 01369 0-1369
Hyg, Hys 0-0694 0-0076
Hayys, Hyts 0 01272
Hotinang, Hursany 00694 0-1348
Honiiomms, Hutieanns 0-1369 0-0903
Hauyz, Hany 01316 00396
Hy, Hyq 0-0054 0-0470
2. The values of Giw m?/m 28) 0-0408 0-0050
volume-wall Gaw, Gaw 00344 0-0358
direct interchange Gaw 0:0057 0-0294
areas
G m?/m 29) 0-0366 90725
G, Gar 0-1540 01526
G 0-0718 0-0481
3. The values of wall-  Hy, Hys mi/m 3D 0-0101 0-0101
wall overall inter- Hyo, Hyy, Hys, Hyy 0-1586 0-1586
change areas H,, 00576 0-0576
H,., H,s 0-0827 0-0827
H,, 0-5673 0-5673
4, The values of Giw m2/m (33) 00434 0-0082
volume-wall overall  Gaw, G 0-0426 00432
interchange areas Gaw 0-0091 0-0320
Gio 0-0486 0-0840
Gar, Gae 0-1826 0-1820
Gav 00830 0-0601
5. The differences of E,— E, kKW/m? (36) 258 277
black-body energy E,— E 244 32
emissions
6. The resulting heat Ores.1 kW/m 34) 11+1 91
flux
(5). In case of lower location of the flame — 0-2538(E, — E,) - 0-3919(E; — E;) =
equation system (36) is as: = 3-000

O . _ and it is found that E, — E; = 258 kW/m? and
+ 0-47900(E, — Ey) — 0-1269(E, — By) = E, — E; = 244 kW/m?. Using these values, the
= 9267 resulting heat flux is calculated from formula
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Table 4. A comparison between the numerical example and the experimental data

No. Character Dimension Numerical example Experimental data

1 Length of the furnace chamber m ] 07
2 Absorbitivity of the walls and

bottom —_— 08 unknown
3 Temperature of the bottom °C 1000 unknown, can be esti-

mated to 950-1050
4 Heat flux at the walls — walls are considered unknown
to be as adiabatic
surfaces
5 Temperature field in the chamber — two discrete zones continuous, having a
peak as a flame zone

6 Temperature of the flame zone °C 1200 1100-1250
7 Temperature of non-burning

gaseous zone °C 1050 1010-1100
8 Resulting heat flux at the boitom

reduced to the 1 m length of

the chamber:

at lower location of the flame kW/m 111 105
at upper location of the flame kW/m 91 88

9 Difference of heat transfer at

various locations of the flame per cent 22 19

(34), as
QOres, 1 = 08 (23-2 X 0-0486 + 1181 X
0:0434 4- 2 X 258 X 01586 x
0-8 4 0-8 x 24-4 x 0:0576) = 11-1
kW/m,

DISCUSSION

It is of interest to compare the results of the
calculation method with the real conditions.
With this in mind, the initial data of the numerical
example were chosen to fit the experimental
data of Zahkarikov {12, 13]. However, it was
necessary to choose some approximate data
in the numerical example, since not all factors
were determined in experiments. Moreover the
calculation would become rather complicated
if we accountéd for the less important factors.

In Table 4 results and some initial data of the
numerical example are compared with those of
the experiment. The numerical calculation can
be seen to yield satisfactory results. It should
be noted that absolute values of resulting radiant
flux decrease rapidly if some lower value for the
temperature of the volume zones is chosen.
The numerical calculation shows that when the
flame temperature is 1180°C, the resulting flux

at the lower location of the flame is 102
kW/m and at the higher location of the
flame it is only 8-5 kW/m. Decreases in relative
heat transfer at various locations of the flame
vary between 20 and 22 per cent. This result
can be used to explain the experimental fact,
that at higher loads of the furnace chamber, the
mentioned difference increases [12, 13].

The strong dependence of heat transfer on
the temperature conditions mitigates against
the attainment of high accuracy in the resulting
heat flux. This method can be recommended
only for approximate calculation. In this con-
nexion increasing the number of zones is not
effective because current methods do not allow
of the use of the temperature distribution in the
medium as initial data.

However, being somewhat approximate, the
method is effective in solving problems where
relative heat-transfer conditions are studied, for
example in problems of heat transfer at various
locations of the flame in the furnace chamber,
and in problems where resulting heat flux
distribution on the walls of the furnace is to be
determined. It follows from the above example,
that the method can give approximate results
even in case of very short ducts.
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Abstract—An approximate radiant heat-transfer calculation method of dealing with cylindrical
systems of rectangular cross section is presented in the paper. Under given conditions, the two-
dimensional theory may be applied. A system of gray walls is considered, filled with an absorbing
medium having no reflectivity and no refractivity. The method of solution of the problem is based
on integral equations. Calculation can be carried out in the following way:

1. The system is divided into zones.

2. For a duct of rectangular cross section, having four surface zones and two volume zones, direct
interchange factors and areas are determined by (21) to (29).

3. Determination of overall interchange areas and factors is carried out by using (30) to (33).
4. Calculation of resulting heat fluxes or zone temperatures is carried out using (17) and (18).

The method is illustrated by an example. The numerical part of the example is given in Table 3,
whilst in Table 4 some experimental data are compared with initial conditions and results of the
numerical example. The method can be used for solving problems on radiant heat transfer if various
locations of the flame in the furnace chamber are to be taken into consideration. The method may

also be useful in determining resulting heat flux distribution in a cross section of the furnace.

Résumé—Une méthode de calcul approximatif du rayonnement de la chaleur dans un systéme

cylindrique ayant un profil rectangulaire est présentée.

Dans des conditions données on peut employer une théorie bidimensionnelle. Un systéme a surfaces
grises, rempli d’un milieu qui absorbe, mais ne refléte et refracte le rayonnement, est étudié. La
méthode de la solution du probléme est fondée sur les équations integrales. Le calcul séffectue dans

I’ordre suivant:
(1) On partage en zones.

(2) Dans le cas d’un canal rectangulaire, dint chaque paroi est prise pour une zone superﬁciglle et
dont le volume est devisé en deux zones, les facteurs et les surfaces d’échange de chaleur directes

sont calculés 4 I'aide des formules (21)-(29).

(3) Les facteurs et les surfaces d’échange résultants sont calculés & P'aide des formules (30)-(33}.
(4) On calcule la quantite résultante de la chaleur transmise (ou les témperatures zonales) d’aprés les

formules (17) et (18).
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La méthode est illustrée d’un exemple. La part numérique de 'exemple est donnée dans la table 3;
dans la table 4 sont quelques données expérimentales comparées aux données initiales et aux résultats
obtenus de I'exemple. La méthode peut ¢étre employée pour résoudre les problémes de foyer compte
tenu de la position de la flamme. La méthode peut étre employée également pour déterminer la courbe

de distribution d’échange de chaleur dans les coupes transversales du foyer.

Zusammenfassung—Eine Methode zur anndhernden Berechnung der Wirmestrahlung in einem
zylindrischen System mit rechtwinkligem Querschnitt ist prisentiert. In gegebenen Bedingungen kann
eine zweidimensionale Theorie angewendet werden. Ein System mit grauen Wandungen und einem
absorbierenden, doch nicht reflektierenden und refraktierenden Medium ist in Betracht gezogen. Die
Losung des Problems wird durch Integralgleichungen erhalten. Die Berechnung kann in folgender
Ordnung durchgefiihrt werden:

(1) Das System ist in Zonen zu verteilen,

(2) Fur den Kanal mit rechtwinkligen Querschnitt, mit 4 Flichen- und 2 Raumzonen sind die
Faktoren und Flichen des direkten Wirmeiibergangs gemiss den Formeln (21)~(29) zu be-
rechenen.

(3) Die resultierenden Ubergangsfaktoren und -Flichen werden nach den Formeln (30)-(33)
berechnet.

(4) Man berechnet die resultierenden tibertragenen Wirmemengen (oder dir Zonentemperaturen)
nach den Formeln (17) und (18).

Die Methode ist mit einem Beispiel illustriert. Der numerische Teil des Beispiels ist in Zahlentafel 3
angegeben, wihrend in Zahlentafel 4 einige Experimentaldaten mit den Ausgangsdaten und Ergeb-
nissen des Beispiels vergleichen werden. Die Methode ist bei Feuerraumproblemen anwendbar, wenn
die Lage der Flamme beriicksichtingt wird. Auch zur Bestimmun der Verteilungskurve des Wiirme-

itbergangs in Feuerraumquerschnitten Idsst sich die Methode vorteilhaft anwenden.
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